334 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

In the section on ordinary differential equations (initial value problems only), the
emphasis is on explicit Runge-Kutta methods. The discussion of stepsize control
remains unsatisfactory; there is neither sufficient motivation nor a serious justifica-
tion for the suggested control mechanism (due to Zonneveld). In the treatment of
multistep methods, D-stability is not distinguished from relative stability.

There are a number of complete Fortran programs for various tasks; the use of
library programs is not emphasized. On the whole, the author has succeeded in
composing an instructive and balanced “Textbook for a Beginning Course in
Numerical Analysis”, which is not at all an easy task.

HANS J. STETTER

4[9.05).—WALTER E. BECK & RupOLPH N. NAJAR, 4 Lower Bound For Odd
Triperfects—Computational Data; a typed manuscript of 61 pages deposited in
the UMT file.

The data contained in this manuscript constitute a tree, each node of which
corresponds to a restriction on the canonical decomposition of an odd integer n
such that 3 | n and o(n) = 3n. The branching process is dependent on the de-
termination of the prime factors of o(p?*) where p is a prime factor of n and a runs
through the set of natural numbers. In most cases the complete factorization of
o(p*®) is given. Roughly speaking, the nodes immediately “following” p** are those
involving ¢ where g is the greatest prime factor of a(p>*). When a node (or case) is
reached for which either n > 10*° or 3’ || n while 3'*2 | a(n), an obvious contradic-
tion, the tree is truncated. Since the nodes considered exhaust the logical possibili-
ties and since it is easy to show (see [2]) that n > 10'® if (6, n) = 1 and o(n) = 3n,
the finiteness of the tree generated establishes a lower bound of 10° for the set of
odd triperfect numbers. This set may, of course, be empty since no odd multiper-
fect numbers (integers n such that a(n)/n is an integer greater than 2) have, as yet,
been found. A list of more than 200 even multiperfect numbers, including the six
known triperfect numbers, may be found in [1]). The present paper is very well
organized and the details are easy to follow. Mathematicians doing research on
perfect or amicable numbers will find this manuscript a valuable source of data on
the factors of o(p2®).
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