In the section on ordinary differential equations (initial value problems only), the emphasis is on explicit Runge-Kutta methods. The discussion of stepsize control remains unsatisfactory; there is neither sufficient motivation nor a serious justification for the suggested control mechanism (due to Zonneveld). In the treatment of multistep methods, D-stability is not distinguished from relative stability.

There are a number of complete Fortran programs for various tasks; the use of library programs is not emphasized. On the whole, the author has succeeded in composing an instructive and balanced "Textbook for a Beginning Course in Numerical Analysis", which is not at all an easy task.

Hans J. Stetter
4[9.05].-Walter E. Beck \& Rudolph N. Najar, A Lower Bound For Odd Triperfects-Computational Data; a typed manuscript of 61 pages deposited in the UMT file.

The data contained in this manuscript constitute a tree, each node of which corresponds to a restriction on the canonical decomposition of an odd integer n such that $3 \mid n$ and $\sigma(n)=3 n$. The branching process is dependent on the determination of the prime factors of $\sigma\left(p^{2 \alpha}\right)$ where p is a prime factor of n and α runs through the set of natural numbers. In most cases the complete factorization of $\sigma\left(p^{2 \alpha}\right)$ is given. Roughly speaking, the nodes immediately "following" $p^{2 \alpha}$ are those involving q where q is the greatest prime factor of $\sigma\left(p^{2 \alpha}\right)$. When a node (or case) is reached for which either $n>10^{50}$ or $3^{t} \| n$ while $3^{t+2} \mid \sigma(n)$, an obvious contradiction, the tree is truncated. Since the nodes considered exhaust the logical possibilities and since it is easy to show (see [2]) that $n>10^{108}$ if $(6, n)=1$ and $\sigma(n)=3 n$, the finiteness of the tree generated establishes a lower bound of 10^{50} for the set of odd triperfect numbers. This set may, of course, be empty since no odd multiperfect numbers (integers n such that $\sigma(n) / n$ is an integer greater than 2) have, as yet, been found. A list of more than 200 even multiperfect numbers, including the six known triperfect numbers, may be found in [1]. The present paper is very well organized and the details are easy to follow. Mathematicians doing research on perfect or amicable numbers will find this manuscript a valuable source of data on the factors of $\sigma\left(p^{2 \alpha}\right)$.

Peter Hagis, Jr.
Department of Mathematics
Temple University
Philadelphia, Pennsylvania 19122

1. Alan L. Brown, "Multiperfect numbers-cousins of the perfect numbers-No. 1," Recreational Mathematics Magazine, Jan.-Feb. 1964, Issue No. 14, pp. 31-39.
2. Walter E. Beck \& Rudolph M. Najar, "A lower bound for odd triperfects," Math. Comp., v. 38, 1982, pp. 249-251.
